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Abstract 

Determining the rank of a matrix has several important 
applications.      In modern array processing, the rank can be used to 
determine the number of targets detected.      Radar normally 
performs this operation prior to determining the direction  and 
velocity of each air platform.      Also, sonar performs this operation 
before it attempts to classify submarines.      It is therefore essential 
that the rank of the signal matrix be determined efficiently and 
accurately.      It is assumed that the signal matrix is square and free of 
a nilpotent part.        Unfortunately, there is usually noise added to the 
elements of the signal matrix due to such factors as the background 
in which the signal is embedded or instrument uncertainty. 

This paper describes a method for predicting the rank of a 
signal matrix by analyzing the coefficients of the characteristic 
polynomial of the noisy version of this matrix.      These coefficients 
can be computed from algebraic sums of products of the elements. 
Time consuming iterations, which take place in methods involving 
singular values, are avoided. Furthermore, the results are shown 
to compare favorably to those produced by a singular value 
approach. 

111 
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Determining   the   Rank   of   a   Noisy   Square   Matrix 
Using    the    Characteristic    Coefficients 

I.      Introduction 

An NxN real matrix M is a representation of a linear operator 
from RN onto a certain   subspace called the column space of M.       The 
number of linearly independent vectors  needed to  span the column 
space is N or less and is called the rank of the matrix.     For example, 
if a 7x7 matrix only needed four vectors to span its column space, 
then the rank would be four.        This rank of four would manifest 
itself by M having only four nonzero eigenvalues or four nonzero 
singular  values. 

Determining the rank of a matrix has several important 
applications.        In modern array processing, the rank can be used to 
determine the number of targets detected. Radar normally 
performs this  operation prior to determining  the direction and 
velocity (using the doppler shift) of each air platform.        Also, sonar 
performs this operation before it attempts to classify submarines.       It 
is therefore essential that the rank of the signal matrix be 
determined efficiently and accurately. It will be assumed 
throughout this paper that the signal matrices we are discussing are 
square and do not have a nilpotent part.      Unfortunately, there is 
usually noise added to the elements of the signal matrix due to such 
factors as the background in which the signal is embedded or 
instrument   uncertainty. 

This report describes a Monte Carlo method for determining 
the rank of a signal matrix using the coefficients of the characteristic 
polynomial of the noisy version of this matrix.      These coefficients 
will be referred to as the Ck's.      The Monte Carlo calculations are 
done in the lab.      The matrix determined in the field is then 
compared with these Monte Carlo results.      Finally, the success rate of 
the model is discussed for different levels of noise and compared 
with a singular value approach. 
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II.     The Characteristic Coefficients 

A.     Computing the Characteristic Coefficients 

Recall that every matrix has a characteristic equation.      This 

equation is formed by: (1) subtracting x from each element on the 
diagonal of the matrix, (2) taking the determinant of the new matrix, 
and (3) setting this determinant equal to zero.        For example, 

consider the 2x2 matrix below: 

M = 
'Al   A2\ 

51   B2 (2.1) 

Subtracting x from each of the diagonal elements and setting the 

determinant equal to zero, we get: 

Al-x      A2 
B\      B2-x 

= 0 
(2.2) 

This yields the equation: 

(A\-x)(B2-x)-(A2xBl) = 0 (2.3) 

Expanding  equation  (2.3)  produces: 

x2 - (Al + B2)x + (Al x B2 - A2 x BV) = 0 (2.4) 

Equation (2.4) is the characteristic equation, and it can be put into 

the  form: 

x2 + CiX + C2 = 0 (2.5) 

In equation (2.5), Ci and C2 are the characteristic coefficients (the 

Ck's for k = 1 and 2) and are equal to: 
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Ci = -(Al + ß2) (2.6) 
C2 = (AlxB2-A2xB\) (2.7) 

Ci is the negative of the trace of matrix M, and C2 is the determinant 

of M. 
For the 3x3 case,    the characteristic equation comes from the 

following determinant set equal to zero: 

(-D: 
(Al-x)       A2 A3 

B\       (B2-x)       B3 
Cl C2       (C3-x) 

= 0 

(2.8) 

The  characteristic  equation  is: 

x3 + Cix2 + C2x + C3 = 0 (2.9) 

where 
Ci = -(Al + B2 + C3) (2.10) 
C2 = +(A1B2 - A2B1+ A1C3- A3C\ + B2C3 - B3C2) (2.11) 
C3 = -(AIB2C3 + A2B3C1 + A3B1C2 - A3B2C1 - A1B3C2 - A2BIC3) (2.12) 

Cl again is the negative of the trace of the matrix, and C3 is 
now the negative of the determinant.      C2 is the sum of three 2x2 

determinants.      The first of the 2x2 determinants is formed using the 
four elements defined by the intersection of the first two rows with 
the first two columns.      The second determinant is the intersection of 
the first and third rows and columns, and the last determinant is the 
intersection of the second and third rows and columns.      In short, C2 

is the sum of all determinants that can be formed by taking the 
intersection of two rows with the same two columns.       Up to a sign 
this is what happened with Cl and C3 also.     C3 is the negative of the 

sum of all determinants involving three rows with the same three 
columns.      In the case of a 3x3 matrix there is only one such 
combination; however, for a larger matrix there will be many such 



NAWCADWAR--96-21 -TR 

combinations.       For Ci  each of the determinants clearly involves only 

one  element. 
In general, for an NxN matrix, Ck is formed by multiplying 

minus one to the kth power times the sum of all the determinants 
that can be formed from the N rows and columns taken k at a time. 
The k rows must correspond to the same k columns.       For example, 
suppose we had a 7x7 matrix.      One of the determinants for C3  would 
involve rows 1, 3 and 6.        That determinant must also involve 
columns 1, 3, and 6.       There would be 7 choose 3 (which calculates to 
35)    such determinants in the sum for C3. 

In short,   each of the Ck's can be written down as of a formula 

involving an algebraic sum of products of the elements of the original 
matrix.       This fact allows for parallel   processing in the 
determination of the Ck's.       In particular, it is important to note that 
their calculation does not involve root finding or the sort of iterative 
computation  which  usually  characterizes  the  computation  of 
eigenvalues   and   singular  values. 

B.     Useful Properties of the Characteristic Coefficients (the Ck's) 

While we are recommending that the Ck's be actually computed 
in terms of the elements of the original matrix as described above, 
there is another way to compute them that demonstrates a useful 
property of the Ck's.       The useful property is that if we have, for 
example,    a 7x7 matrix with a rank of 4   (N.B. we are assuming no 
nilpotent part throughout this report), then C5, C6 and C7 are all zero. 
Furthermore,   C4 is nonzero.     In general, for a NxN matrix of rank M, 
the last N minus M Ck's are zero.       This statement is most easily 
shown by considering the calculation of the Ck's in terms of the 
eigenvalues   (X's).     The Ck's are invariant under a similarity 
transformation.        Assuming (as we have) that the matrix can be put 
into diagonal form, the diagonal elements are the Vs.    The Ck's can 
be calculated for the diagonal matrix using the same rules which 
were discussed above.      In particular, C2 would still be the sum of 
the N choose 2 determinants that can be formed.      The determinants 
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each only involve one term since the matrix is diagonal.      For 

example, for a 3x3 matrix, 

C2 = (M^2 + M^3+k2 X3) (2.13) 

where   X,l X2 is the determinant for rows and columns  1  and 2. 
Looking at the set of all three Ck's for the 3x3 matrix in diagonal 

form: 
Ci =.(M +X2 +Ä.3) (2.14) 
C2 = (Xl X2 + Xl X3 + X2 X3) (2.15) 
C3 = -U X2X?> (2.16) 

We see easily that the number of nonzero eigenvalues equals 
the rank of the matrix.     For the 3x3 matrix if only one of the 
eigenvalues is zero (and therefore two are nonzero), then the rank is 
two; however, expressing the Ck's in terms of the X's one can see that 
if only one of the eigenvalues is zero, then C3 is zero, while 0,2 is 

nonzero.      If the rank is one, and two of the eigenvalues are zero, 
then C2 and C3 are both zero, while Ci is nonzero .   Finally, if the 

rank is zero because all three eigenvalues are zero, then all three of 
the Ck's are zero. 

If we were working with a 7x7 matrix and the rank were six, 
then one X would be zero, and this would cause C6 to be nonzero and 
C7 to be zero. If the rank of the 7x7 matrix were 4, then C4 would 
be nonzero and C5, Co and C7 Would all be zero. Determining which 
Ck's are zero, in theory, tells us the rank of the diagonalizable matrix. 

C.     The Problem with the Ck's 

Most data is contaminated by noise     The problem then is to 
estimate the rank in the presence of noise.      This noise also affects 
the Ck's.     For example, a 7x7 matrix of rank 4 in the presence of 
noise will in general not have C5, Co and C7 equal to zero. 

In order to appreciate the extent of this problem consider the 
following diagonalizable 7x7 matrix M with rank 4 (not obvious): 
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f-11.803    -9.679      9.459      -4.238      6.708     -10.425    -7.105 

M = 

49.566 
33.564 

45.290 
30.278 
5.826 
5.591 

-13.561 

14.296 

2.359 
-19.164 

33.312 
29.720 

82.518 

3.511 
25.720 
57.783 

-67.536 
-36.245 

3.085 

8.375 
7.981 
-1.179 
8.888 
12.981 

-24.717 

-18.367 
-21.422 

-51.103 
5.907 

-5.088 
-13.972   -34.612 

-6.442     53.129 
-0.088     28.777 

9.505 
15.057 

18.353 
4.884 

13.097 
11.715 

(2.17) 

The Ck's of M compute to be the set: {Ci C2 C3 C4 ,C5,C6 C7} = 

{-37,     -109,     11317,      -41412,      0,      0,      0}. 
If noise at the 0.1 level is added, we get the matrix M' below. 

The details of how M was generated and how the noise was added to 

form M' are explained in the next chapter. 

M = 

'-11.867 -9.567 9.276 -4.174 6.577 -10.404 -6.950' 

49.453 -13.434 82.401 3.136 -24.866 -51.159 9.391 

33.591 14.290 3.507 8.537 -18.381 5.797 14.882 

45.263 2.392 25.537 8.019 -21.382 -5.172 18.378 

30.248 -19.050 57.955 -1.217 -13.951 -34.529 4.831 

5.760 33.358 -67.592 8.979 -6.405 53.054 13.205 

k  5.642 29.668 -36.238 13.045 -0.068 28.822 11.821 , 

(2.18) 

The Ck's for M' are now changed to the set: 

{-37.1,    -106.0,    11407.0,    -40571.9,    -3015.2,    -30003.3,    -6525.5}. 
All the Ck's are changed, but most importantly, C5, C6 and C7 are far 

from zero.      Moreover, if M' were to be multiplied through by a factor 
of 10 things would get worse.     Ci would be 10 times larger;   C2 

would be  100 times larger because it involves products of two 
elements at a time;    C3 would be 1000 times larger, etc.     In this case 

C5, C6 and C7 would be even more enormous. 
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D.    The Solution to the Ck Problem 

To solve this problem the matrix needs to be normalized by 
dividing through by a constant so that the normalized eigenvalues 
would tend to be less than one.    The normalizing factor (N.F.) should 
be easy to compute, tend not to be zero, and reflect the size of the 
eigenvalues.       We chose the following N.F.: 

N.F. = square root of the the absolute value of the 
sum of the squares of the eigenvalues (2.19) 

The sum of the squares of the eigenvalues happens to be equal 
to the trace of the matrix squared.        To understand this last 
statement, express the matrix in diagonal form, multiply it by itself, 
and then take its trace.    We called this trace t2- 

N.F.= ^\ (220) 

It turns out that t2 can also be computed from the Ck's: 

t2=a-2c2 (2.21) 

Instead of dividing all the matrix elements by N.F., we normalized 
the Ck's themselves.       This was done by creating a normalized set of 
coefficients which we called the Pk's,      where: 

VN     N-
F (2.22) 

When two or more of the eigenvalues are complex, it is possible 
(albeit extremely rare) that t2 is zero.      Since the computation of the 
Pk's involves a division by t2, a check to see if t2 is zero should be 
done before this method is used. 
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III. Description of Our Monte Carlo Simulation 

A.      Generating Noisy Matrices 

We developed and tested our approach by studying 7x7 

matrices using Mathematica.      For each rank from one to seven we 
generated  1000 matrices with noise added at a prescribed level. 
This procedure of generating the matrices and adding the noise will 

be described in detail in succeeding paragraphs.        The set of seven 
Pk's for each matrix was computed.        The effect of rank on the Pk 

distributions  was   studied. 
To generate a matrix with a particular rank we first chose an 

appropriate set of eigenvalues.      We then used these eigenvalues to 
create a diagonal matrix.        After this, we performed a similarity 
transformation on the diagonal matrix to put it into a more general 

form.     Finally, we added the noise. 
Next we shall explain the above process in more detail using as 

an example the 7x7 matrix M discussed in the previous chapter: 

f-11.803 -9.679 9.459 -4.238 6.708 -10.425 -7.105' 
49.566 -13.561 82.518 3.085 -24.717 -51.103 9.505 
33.564 14.296 3.511 8.375 -18.367     5.907 15.057 
45.290 2.359 25.720 7.981 -21.422 -5.088 18.353 
30.278 -19.164 57.783 -1.179 -13.972 -34.612 4.884 
5.826 33.312 -67.536     8.888 -6.442 53.129 13.097 
5.591 29.720 -36.245 12.981 -0.088 28.777 11.715 

M = 

(3.1) 

The rank of the matrix was determined by controlling the 

number of nonzero eigenvalues.        If we wanted a rank 4 matrix, we 
would choose 4 nonzero eigenvalues.      The eigenvalues were 
randomly chosen from the set of integers from 1 to 30.      For each 
eigenvalue we, in effect, tossed a coin to decide whether it should be 
positive or negative.      The coin tossing was carried out by choosing a 
floating point number randomly from 0 to 1.      If the floating point 
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number was less than 0.5,    a minus sign was associated with the 
eigenvalue; otherwise,    it remained positive.      For our example matrix 
M, this set turned out to be: {4, 21, 29, -17} 

A diagonal matrix (D) was created with the chosen set of 
eigenvalues placed on the diagonal and zeros padding the remaining 
positions.     In the above 7x7 matrix of rank 4, the set of 4 
eigenvalues and 3 zeros were positioned on the diagonal.      In our 
example, 

D = 

( 4 0 0 0 0 0 0 A 

0 21 0 0 0 0 0 

0 0 29 0 0 0 0 

0 0 0 -17 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

lo 0 0 0 0 0 o J (3.2) 

Next, a similarity transformation,    M = TDT-1, was   performed 
on the diagonal matrix to put the matrix into a more general form. 
Each element of the transformation T was  separately randomly 
chosen from the range of floating point numbers from -1.0 to +1.0. 
The particular T which produced M from D was: 

T = 

f-0.058 -0.318 0.340 -0.231 -0.718 0.561 -0.364^ 

0.669 -0.275 -0.898 0.656 0.553 0.391 -0.222 

0.333 0.493 -0.836 0.576 0.974 0.276 0.257 

-0.833 0.635 -0.896 0.940 -0.940 -0.724 0.883 

-0.354 -0.127 -0.263 0.723 -0.224 0.721 -0.587 

0.267 0.899 -0.383 0.334 0.919 0.390 0.384 

[-0.569 0.681 -0.991 -0.664 0.737 -0.557 -0.396J (3.3) 

Here the elements of T have been rounded to three decimal places. 
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Noise was handled in the following manner:    Suppose    noise at 
the level of 0.1 was to be added to the matrix M.     This value (0.1) 
was then used as  the standard deviation for the normal distribution 
with a mean of zero.       Using Mathematica's intrinsic 
NormalDistribution function, a value of "x" was randomly chosen 
from this distribution and added to the first element value.        In the 
actual calculation of our matrix M',    the noisy version of M,    the value 
-0.064    was chosen for "x," and the first element of M' became 
-11.803 + (-0.064) = -11.867 .       The process was then repeated 
independently for each of the other elements to produce: 

Af = 

'-11.867 -9.567 9.276 -4.174 6.577 -10.404 -6.950' 

49.453 -13.434 82.401 3.136 -24.866 -51.159 9.391 

33.591 14.290 3.507 8.537 -18.381 5.797 14.882 

45.263 2.392 25.537 8.019 -21.382 -5.172 18.378 

30.248 -19.050 57.955 -1.217 -13.951 -34.529 4.831 

5.760 33.358 -67.592 8.979 -6.405 53.054 13.205 

k   5.642 29.668 -36.238 13.045 -0.068 28.822 11.821 , (3.4) 

B.     Using the Pk Profile to Determine the Rank 

The 7 Ck's were then computed.     For the above matrix M' this 

set turns out to be those listed in chapter II, namely, 
{-37.1,    -106.0,    11407.0,    -40571.9,    -3015.2,    -30003.3,    -6525.5}. 
The normalizing factor (N.F.) is computed as: 

r2 = C?-2C2 

f2 = (-37.1)2-2(-106.0) 
t2 = 1588.41 

N.F.= V|1588.41| 

N.F = 39.85 

(3.5) 

(3.6) 
(3.7) 

(3.9) 

(3.10) 

(3.11) 

10 
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The set of 7 Pk's were then calculated from: 

Pk~lM 
For example P3 would be: 

(3.12) 

/>3 =   V< 
NF (3.13) 

_ V|l 1407.01 
Pi ~    39.85 (3.14) 
P3 = 0.56 (3.15) 

The set of Pk's for the matrix M' above are: 

{0.93,   0.26,   0.56,   0.36,   0.12,   0.14,   0.09} 

To determine the rank, these values of the Pk's have to be 

compared against certain threshold values.        Recall, if there were no 
noise, then for the example M,   C5 = C6 = C7 = 0 and C4 is nonzero. 
With the noise level set to 0.1,   these Ck's got rather large.     The Pk's 
are much more robust.      We expect P5, P6 and P7 to be relatively 
low, and P4 to be relatively high.       How we determine the   thresholds 

for sorting out low from high will be discussed in the next chapter. 
The thresholds when the noise level is 0.1 will be shown to range 
between 0.2 and 0.3.       Values like those of P5, P6 and P7,  namely, 

{0.12,    0.14,    0.09}    respectively, are low relative to thresholds in this 
range; whereas a P4    value of 0.36   is relatively high. 

This pattern of Pk's, a high P4 and low values of P5, P6 and P7 

we will refer to as the profile for rank 4.     A matrix such as M' 
having this profile would be predicted to be rank 4.      Keep in mind 
Cl, C2 and C3 and therefore Pi, P2 and P3 can be low or high for 

rank 4.      Therefore,    they cannot be used as part of the rank 4 

profile. 
The entire Pk profile set for a 7x7 matrix is the following: 

rank 7 = high P7; 
rank 6 = high P6, and low P7; 
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rank 5 = high P5, and low P6 and P7; 
rank 4 = high P4, and low P5, P6 and P7; 
rank 3 = high P3, and low P4, P5, P6 and P7; 
rank 2 = high P2, and low P3 P4 P5, P6 and P7; 
rank 1 = high PI and low P2, P3, P4, P5, ?6 and P7 

IV.     Results of the Monte Carlo Simulation 

A.     Testing the Ability to Distinguish Ranks 

The first thing we checked was the effect of rank on the critical 
Pk's.       For example,   since we were generating 7X7 matrices,   P7 
was the critical Pk for distinguishing matrices with rank 7 from 
matrices of lower rank.        Matrices with a rank less than 7 should 
have a somewhat lower value of P7  than matrices with rank 7. 
Recall, in the noise free environment P7 for matrices with a rank less 
than 7 should be zero.        What is compared below are two histograms 
of P7 values where the noise level was set at 0.1.    The histogram 
with the large dots is for rank 7 matrices;    the histogram with the 
small squares is for rank 6. 

Frequency 

100 r 

SO 

60 

40 

20 

•. ■ 

0 MM 

Figure 1. 

MM***» 
•M • 

■ ■ ■ 
■   ■■ 

1   ■■■t| P7 
0.1 0.2 0.3 0.4 0.5 

Frequency versus P7  values for rank 6 (small squares) and 

rank 7 (large dots). 
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If a P7 value of 0.21 is used as a threshold value,    we find that 
81% of the rank 6 matrices have their P7  value lower than this value; 
whereas, 86% of the rank 7 matrices have their P7  value higher than 

this  value. 
A prior study had been performed using percent noise.        The 

standard deviation for the noise to be added to each term was taken 
to be a certain percentage of each element rather than an absolute 
value.       When the noise was set at the one percent level,    the same 
sort of separation between rank 6 and rank 7 occurred although the 
percentages were somewhat different.       In this earlier study we also 
tested the other critical Pk's,    namely P6  to distinguish between rank 
6 and rank 5,    etc., and similar separations were found for the other 
critical Pk's. 

B.      Setting the Thresholds 

In the latest study (using absolute values for the noise),  1000 
matrices were generated for each rank from rank one to seven.        The 
set of Pk's were calculated for each matrix.       This process was 
performed    with the absolute noise set at different values. Using 
this pool of data, we could examine the effect of setting the threshold 
levels to various values.      As an example of what we did next, 
consider the effect of setting the noise level to 0.1  and the thresholds 
for the Pi to P7 to the values   {0.11,   0.29,   0.25,   0.25,   0.23,   0.23, 
0.29 }    respectively.        How we arrived at these specific thresholds 
will be explained later.     Recall, the profile for rank 1 was a Pi   value 
higher than its threshold (0.11), and P2 through P7  values lower 
than their thresholds of {0.29,   0.25,   0.25,   0.23,   0.23,   0.29}.     This 
profile was satisfied by 777 (out of 1000) matrices whose actual 
rank was one.     Below is a table of the number of matrices out of 
1000 that had the rank  1  profile versus the actual rank. 
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Actual Rank 1 2 3 4 5 6 7 Total 

Number of Matrices 
with Rank 1 
profile 

777 61 6 0 0 0 0 844 

Percent of Total 
with Rank 1 
profile 

92.1 7.2 0.7 0 0 0 0 100 

Table 1.    Raw data with the noise level set at 0.1 and rank 1 profile 

From this table we see that when the noise level is 0.1, the success 

rate for the profile for rank one is (777/844) x 100% = 92.1%. This 

kind of data was gathered for each of the seven profiles. 
To improve our selection of the thresholds we first set all seven 

thresholds to 0.01  and computed the percent success rate for each 
profile. Then we incremented these synchronized thresholds to 
0.02 and recomputed these success rates.      We    continued 
incrementing the thresholds by 0.01  over the range from 0.00 to 
1.00,    and then plotted the percent success rate for each profile 
versus the synchronized threshold value.        A sample of four of these 
plots for profiles 1, 3, 5 and 7 appears below. 

Figure 2. 
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Percent success rates versus threshold for rank 1 
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Percent success rates versus threshold for rank 3 
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Figure 4. 
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Percent success rates versus threshold for rank 5 
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Percent Success Rate for Rank 7 
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Figure 5. 
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Percent success rates versus threshold for rank 7 

The plots for ranks 2, 4 and 6 were similar to those for ranks 3, 5 
and 7,    with maxima between 0.2 and 0.3. 

We then ran another case with the thresholds for P2   through 
P7  taken as the maxima from the above synchronized threshold 
plots.     The maxima for P2 through P7 are the set   {0.29,   0.25,   0.25, 
0.23,   0.23,   0.29}.     The threshold for Pi  was taken as the highest 
value   (Pi  = 0.11)   which still gave a 100% success rate for predicting 
rank 1.     This is how we came up with the set of thresholds for Pi 
through P7 listed earlier,   namely {0.11,   0.29,   0.25,   0.25,   0.23, 

0.23,   0.29} . 

C.     Results Using the Pk Rank Profiles 

The complete set of data for all seven profiles, using the 
thresholds determined in the previous  section, is  shown next. 
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Actual Rank 1 2 3 4 5 6 7 Total 

Number of Matrices 
with Rank 1 
profile 

111 61 6 0 0 0 0 844 

Number of Matrices 
with Rank 2 
profile 

142 676 63 14 1 0 0 896 

Number of Matrices 
with Rank 3 
profile 

27 231 719 89 25 5 0 1096 

Number of Matrices 
with Rank 4 
profile 

16 19 195 631 96 20 5 982 

Number of Matrices 
with Rank 5 
profile 

10 6 14 252 683 111 58 1134 

Number of Matrices 
with Rank 6 
profile 

17 6 1 12 192 839 559 1626 

Number of Matrices 
with Rank 7 
profile 

11 1 2 2 3 25 378 422 

Table 2.    Raw data with the noise level set at 0.1 

The data table shown above is for an (absolute) noise level of 
0.1.        The same data was generated for the following noise levels: 
0.5,   1,   2,   3,   4,   5,   6,   8 and 10.    For each noise level the percent 
success rates for each rank profile were computed.        These percent 
success rates are listed in Table 3 which follows. 
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Noise Level 0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 

Percent Success 
Rate for Rank 1 
profile 

92 83 75 73 64* 25* 60* 60* 100* 33* 

Percent Success 
Rate for Rank 2 
profile 

75 51 42 30 28 22* 20* 17* 18* 15* 

Percent Success 
Rate for Rank 3 
profile 

66 44 34 26 21 18 16 17 16 15 

Percent Success 
Rate for Rank 4 
profile 

64 37 28 22 19 19 15 21 14 15 

Percent Success 
Rate for Rank 5 
profile 

60 37 27 22 22 18 16 16* 15 15 

Percent Success 
Rate for Rank 6 
profile 

52 42 33 23 18 19 16 20 20 13 

Percent Success 
Rate for Rank 7 
profile 

90 54 36 23 18 16 14 15 14 13 

Table 3.      Percent success rates for predicting the exact rank 
versus the noise level. 

Some of these percentages were computed with less than 50 
matrices in the sample.      These numbers - listed with an asterisk 
next to them - are probably unreliable.        Since there are seven 
possible ranks,    choosing a rank randomly one would expect to be 
correct once in every seven guesses which is about 14 percent. 
Hence,  14 percent can be regarded as the background level. 

The percent success rates were also computed using the rank 
profiles to predict the rank plus or minus one.       For example, we 
computed the success rate using the profile for rank two when the 
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actual rank was one, two or three (that is, two plus or minus one). 
Using the numbers in Table 2. there were 142 matrices with an 
actual rank of one that satisfied the profile of rank two.        There were 
676 matrices with an actual rank of two that satisfied the profile of 
rank two,    and there were 63 matrices with an actual rank of three 
that satisfied the profile of rank two.     The total of these numbers is 
881 matrices.       The total of matrices from all seven actual ranks 
with the profile of rank two is 896.      Therefore, dividing the 881 by 
896 and multiplying by 100 percent,    yields a success rate of 98 
percent.      Performing this calculation on all the other ranks for the 
various noise levels,    we get Table 4. 
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Noise Level 0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 

Percent Success 
Rate for Rank 1 
profile 

99 95 94 88 96* 50* 60* 100* 100* 33* 

Percent Success 
Rate for Rank 2 
profile 

98 94 91 89 73 64 62 56 45 45 

Percent Success 
Rate for Rank 3 
profile 

95 84 78 68 57 54 48 47 47 44 

Percent Success 
Rate for Rank 4 
profile 

94 79 72 59 52 51 47 52 48 43 

Percent Success 
Rate for Rank 5 
profile 

92 79 68 57 57 51 48 42* 48 44 

Percent Success 
Rate for Rank 6 
profile 

98 87 76 62 54 53 47 50 49 43 

Percent Success 
Rate for Rank 7 
profile 

95 74 55 39 34 31 28 29 27 27 

Table 4.      Percent success rates for predicting the rank plus 
minus one versus the noise level. 

or 

It should be noted that in Table 4 the end ranks of one and 
seven were treated somewhat differently.        For rank one "plus or 
minus one" the minus one had no meaning;    hence, only matrices 
with actual ranks of one and two with the profile of rank one were 
counted.      Similarly, only matrices with actual ranks of six and seven 
with the profile of rank seven were counted.      Again, the asterisk 
denotes cases where the success rate was computed using fewer than 
50  matrices,  and  are  statistically  unreliable. 

20 



NAWCADWAR--96-21 -TR 

D.      Comparison with a Singular Value Approach 

For the pool of 7000 matrices used in the above analysis we 
also computed the singular values.      This was done for comparison 
purposes.       There are several methods for determining the effective 
rank of a matrix from its set of singular values.       One such method 
involves using seven times the noise level as a threshold [1].      For 
example, if only three of the set of seven singular values for our 7x7 
matrices are above this threshold,    then the effective rank would be 
determined to be three.      In fairness,    the authors that suggested this 
threshold point out that there are other thresholds that would 
provide a somewhat reduced success rate over a larger range of 
noise levels.        There are also several other singular value methods in 
vogue.    The "3 db method", for example,    starts with the largest 
singular value and tests successively smaller singular values to see if 
the square of one singular value is suddenly a factor of two or more 
less than the the square of the previous singular value.      If this 
condition is discovered for the Nth singular value, then this Nth value 
and all  smaller singular values are considered below the threshold. 

Due to time considerations we only performed one comparison. 
We compared the success rates using our Pk profiles to the singular 
value threshold of seven times the noise level.      We were especially 
interested in how our profile model compared with this singular 
value approach for low rank determination.      Our statistics were poor 
for the larger noise values in the exact determination of rank one 
and rank two separately (the first two rows of Table 3.).      Since our 
statistics were also poor for the rank plus or minus one case for data 
with the profile of rank one (the first row of Table 4.), we used the 
rank plus or minus one case for data with the profile of rank two 
(the second row of Table 4.).       For comparison, we used those 
matrices with actual ranks of one, two and three that had only two 
singular values  above the threshold  and  would therefore be 
predicted as rank two. We gathered this data for each of the noise 
levels.      It is tabulated in Table 5 and plotted in Figure 6. 
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Noise Level 0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 

Percent  Success 
Using Profiles 

98 94 91 89 73 64 62 56 45 45 

Percent  Success 
Using  Singular 
Values 

100 97 90 62 40 26 19 14 10 10 

Ratio of the 
Above  Success 
Rates 

0.98 0.97 1.01 1.44 1.83 2.46 3.26 4.00 4.09 4.50 

Table 5.    Percent success rates for rank two plus or minus one using 
our Pk model and the singular value model described above. 
Also, the ratio of these success rates is tabulated. 

Percent 
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Figure 6.    Percent success rates for rank two plus or minus one, using 
our profile model, the "P's", and the singular value model, 
the "S's", described below. 
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The error bars on the "P's" were determined using the 
following process.        The sum of the numbers of matrices with actual 
ranks one, two and three which satisfied the profile of rank two was 
computed.      Then the square root of this sum was added to and 
subtracted from this sum.      Finally, these numbers were divided 
appropriately to become percentages.        Using the same approach for 
the singular value analysis,    the error bars on the "S" values were 
smaller than the "S" itself except when the noise level was less than 
one.      When the noise was less than one, the error bars were only 
slightly larger than the "S".        Because they were generally very 
small,    the "S" error bars were omitted. 

The signal to noise ratios were determined using the formula: 

SNR = lOlog 

( 7      A 
2U? 
1=1 

a 

) (4.1) 
where   SNR = the signal to noise ratio 

a = the noise level 

hi = the ith eigenvalue 

In our experiment the noise level o was set at a particular value and 

1000 matrices were generated for each of the seven ranks.      The 
signal is t2, that is, the sum of the squares of the eigenvalues (before 

the noise is added).        Recall, the nonzero eigenvalues were allowed to 
independently  range  from  negative  thirty  to  positive  thirty 
(excluding zero).      Consequently,    the signal, as measured by t2, 

varied considerably over a set of 1000 matrices.      During the 
experiment itself the eigenvalues were not recorded.       The 
experimental data recorded in Table 5    (Figure 6) included matrices 
of actual rank one, two and three in different combinations 
depending on the noise level.       Later,     a large number of 
eigenvalues  were  generated  using  the  same  algorithm used  during 
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the experiment.       The value of t2 was computed for sets of one, two 

and three of these eigenvalues.       The numbers of t2 values used for 

each of the three ranks was in the same proportion as the data    in 
the experiment for noise at the level of 5 and 10.        Average values 
and standard deviations were computed for the t2 values.       Using 

these average values and a one standard deviation variation,    it was 

determined that when the noise level was 5,    the SNR varied 
asymmetrically from 7 to 16 db with an average value of 14 db. 

When the noise level was 10,   the SNR varied from 2 to 10 db with 

an average of 8 db. 
Another way to view these results is to plot the ratio of the 

success rates,    that is, the success rate using the Pk  profile method 

divided by the success rate using the singular value method.      This 

ratio versus the noise level is plotted in Figure 7.       The error bars 
were determined using the uncertainties  only for the profile  success 
rate as discussed earlier.      One can see that for noise levels less than 
or equal to one,    the ratio is about one, and the success rates are 
about equal.       For higher noise levels,    the ratio gradually rises to 
about four and one-half.      The profile method becomes about four 
and one-half times more successful  than the tested  singular value 

method for larger noise levels. 
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Figure 7.    The ratio of the success rates (profile method divided by 
the singular value method) versus the noise level. 

E.     Additional Studies 

Recall, that an earlier study had been carried out using 
percentage noise levels.        With noise computed in this alternative 
manner we checked the effect of varying the range of the 
eigenvalues, and also examined the effects that occur when the 
eigenvalues become complex after the noise has been added. 

1.    Eigenvalue Range 
When we made the range of the eigenvalues smaller,    this 

improved our ability to distinguish ranks.      We compared the P7 data 
at the one percent noise level to see how distinguishable rank 6 was 
from rank 7 for different ranges of eigenvalues.      We generated  1000 
matrices for each rank, and for comparison purposes used a 
threshold of P7 = 0.23      Using the usual range of eigenvalues, namely 
-30 to +30 (excluding 0),    we found that 78% of the rank 6 matrices 
had their P7 below the threshold of 0.23, and 76% of the rank 7 
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matrices had their P7  above this threshold.      When we shortened the 
range of eigenvalues to -10 to +10 (excluding 0), we found for rank 6, 
that there were 77% below the threshold;    whereas, for rank 7, there 
were 87% above 0.23.       The main difference is that when the range 
is smaller, a somewhat higher percentage of the rank 7 matrices is 
above  the   threshold. 

Range of 
Eigenvalues -30 to +30 -10 to +10 

Rank 6 Below 
Threshold 

78% 77% 

Rank 7 Above 
Threshold 76% 87% 

Table 6.     Effect of eigenvalue range on the ability to 
distinguish P7 from ranks 6 and 7. 

2.     Complex eigenvalues 
The process of adding noise to the matrices,    changes the 

eigenvalues.        In some cases the real eigenvalues become complex. 
In  the  earlier percentage  noise  studies we  generated  3000 matrices 
for both ranks 6 and 7 with the noise level set at one percent.       For 
the rank 6 matrices 2117 of the 3000 matrices (71%) still had all 
their eigenvalues real;    however, the remaining 883 matrices (29%) 
had at least one pair of complex eigenvalues.      For the rank 7 
matrices 2092 (70%) had all the eigenvalues remain real, while the 
remaining 909 (30%) had at least one pair of complex eigenvalues. 

When we examined how well the ranks were separated by a 
P7  threshold of 0.23,    we found that when the eigenvalues stayed 
real we were better able to distinguish the P7 values of rank 6 from 
those of rank 7.      Specifically, when the eigenvalues stayed real, 91% 
of the rank 6 matrices were below the 0.23 threshold, and 73% of the 
rank 7 matrices were above this threshold.      However, for the 
matrices that had at least one pair of complex eigenvalues,    only 46% 
of the rank 6 matrices were below the threshold, and 74% of the 
rank 7 matrices were above the threshold.      A much smaller 
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percentage of the values of P7 for rank 6 are less than the threshold 
when the eigenvalues are complex than when the eigenvalues  stay 
real. 

Nature of 
Eigenvalues All real At least one 

complex pair 

Rank 6 Below 
Threshold 

91% 46% 

Rank 7 Above 
Threshold 73% 74% 

Table 7.     Effect of real versus complex eigenvalues on the 
ability to distinguish P7 from ranks 6 and 7. 

Finally,    we found a correlation between matrices which had 
complex eigenvalues  after the noise was added  and  the determinant 
of the similarity transformation.        Of course, the eigenvalues after 
the  similarity transformation  (and  before the noise was  added) were 
the same as the eigenvalues of the original (diagonal) matrix. 
However, when noise was added at the one percent level,    matrices 
that  had  been  created  by  similarity  transformation  matrices  with 
very  small determinants  were significantly  more likely to have 
complex  eigenvalues  than  those  created  with  similarity 
transformation matrices with larger determinants. Of 19 matrices 
studied   whose   similarity   transformations   had   determinants   with 
absolute values less than 0.01, we found 18 of them had complex 
eigenvalues after the noise was added.      The remaining matrix's 
eigenvalues stayed real, but they were changed substantially.      For a 
control group, we studied  18  matrices whose similarity 
transformations   had  determinants   with   absolute  values   greater  than 
1.0.       In this set only two had complex eigenvalues. 
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V.      Summary and Conclusion 

Assuming there are ways to estimate the uncertainty in the 
matrix elements,    the Pk profile of a given matrix can be used to 

determine  its  rank. 
Most of the analysis is performed ahead of time.     This prior 

analysis includes a Monte Carlo generation of matrices with the 
assumed known  uncertainty  level  and  spectrum  of eigenvalues. 
This Monte Carlo simulation is used to generate threshold levels for 
each of the Pk's.     It is also used to compute a table of rank 
probabilities for each of the possible Pk profiles.     At run time the 
Pk's of the given matrix are computed and compared to these 
threshold levels.      This comparison provides the Pk profile.      This 
matrix Pk profile, along with the probability table resulting from the 
Monte Carlo simulation, can then be used to compute the probability 
of every rank.        The rank with the highest probability is then 
predicted as the rank of the given matrix. 

The Pk's are computed from the coefficients of the 
characteristic polynomial  (the  Ck's).      These Ck's in turn can be 
determined from polynomials  involving the elements  of the original 
matrix.        This has the potential for being faster than iterative 
approaches,  for example methods  using  singular values. 

Moreover, we have shown that this Pk  profile  approach 
compares very favorably with at least one singular value analysis. 
As the noise level was increased, we found that the Pk profile 
method  gradually  became more  successful  at predicting  the rank 
than  the tested  singular value  approach. 

Future work in this area includes trying to find faster 
algorithms for computing the Ck's.       Also, the efficiency of using only 
the Pk thresholds with small values of k to determine low ranks 
should be examined.       Currently,   if the rank is one,   the Pk  values 
for the largest values of k are computed first to eliminate the 
possibility of the highest ranks.      However, the Pk values with the 
largest k values take the longest to compute.       While in principle it is 
important to perform the analysis in this top down manner,      it is not 
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clear how much would be lost if the run time analysis were 
performed in a bottom up manner, if the intention is to detect low 
rank   matrices. 
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